| 000 | 01870nmm a22003737a 4500 | ||
|---|---|---|---|
| 003 | SPU | ||
| 005 | 20210629161032.0 | ||
| 008 | 210517b2009 nyu|||||o|||| 00| 0 eng d | ||
| 020 | _a9780387848587 (E-book) | ||
| 040 | _aSPU | ||
| 049 | _amain | ||
| 050 | 0 | 0 |
_aQ 325.5 _bH37E 2009 |
| 100 |
_aHastie, Trevor _9238058 |
||
| 245 | 1 | 4 |
_aThe elements of statistical learning : _bdata mining, inference, and prediction / _cTrevor Hastie, Robert Tibshirani, Jerome Friedman. _h[electronic resource] |
| 250 | _aSecond edition | ||
| 260 |
_aNew York, : _bSpringer, _c2009 |
||
| 300 |
_a1 online resource : _billustrations |
||
| 449 | _a140501 | ||
| 504 | _aIncludes bibliographical references (p. [699]-727) and index | ||
| 505 | _aIntroduction -- Overview of Supervised Learning -- Linear Methods for Regression -- Linear Methods for Classification -- Basis Expansions and Regularization -- Kernel Smoothing Methods -- Model Assessment and Selection -- Model Inference and Averaging -- Additive Models, Trees, and Related Methods -- Boosting and Additive Trees -- Neural Networks -- Support Vector Machines and Flexible Discriminants -- Prototype Methods and Nearest-Neighbors -- Unsupervised Learning -- Random Forests -- Ensemble Learning -- Undirected Graphical Models -- High-Dimensional Problems: p ≫ N | ||
| 650 | 0 |
_aMACHINE LEARNING _954523 |
|
| 650 | 0 |
_aSTATISTICS _xMETHODOLOGY _9168993 |
|
| 650 | 0 |
_aDATA MINING _954308 |
|
| 650 | 0 |
_aBIOINFORMATICS _957219 |
|
| 650 | 0 |
_aINFERENCE _9217618 |
|
| 650 | 0 |
_aFORECASTING _943905 |
|
| 650 | 0 |
_aCOMPUTATIONAL INTELLIGENCE _969461 |
|
| 700 |
_aTibshirani, Robert _9238059 |
||
| 700 |
_aFriedman, J. H. _9242530 |
||
| 850 | _aSPU | ||
| 856 |
_uhttps://drive.google.com/file/d/1cS9-MrVnAYrSKjEGrGQRSd1fqT0uW1J2/view?usp=sharing _yView Full-text |
||
| 910 |
_aLibrary _bSpringer _c170521 |
||
| 942 |
_2lcc _cEBK |
||
| 999 | _c201764 | ||