000 01870nmm a22003737a 4500
003 SPU
005 20210629161032.0
008 210517b2009 nyu|||||o|||| 00| 0 eng d
020 _a9780387848587 (E-book)
040 _aSPU
049 _amain
050 0 0 _aQ 325.5
_bH37E 2009
100 _aHastie, Trevor
_9238058
245 1 4 _aThe elements of statistical learning :
_bdata mining, inference, and prediction /
_cTrevor Hastie, Robert Tibshirani, Jerome Friedman.
_h[electronic resource]
250 _aSecond edition
260 _aNew York, :
_bSpringer,
_c2009
300 _a1 online resource :
_billustrations
449 _a140501
504 _aIncludes bibliographical references (p. [699]-727) and index
505 _aIntroduction -- Overview of Supervised Learning -- Linear Methods for Regression -- Linear Methods for Classification -- Basis Expansions and Regularization -- Kernel Smoothing Methods -- Model Assessment and Selection -- Model Inference and Averaging -- Additive Models, Trees, and Related Methods -- Boosting and Additive Trees -- Neural Networks -- Support Vector Machines and Flexible Discriminants -- Prototype Methods and Nearest-Neighbors -- Unsupervised Learning -- Random Forests -- Ensemble Learning -- Undirected Graphical Models -- High-Dimensional Problems: p ≫ N
650 0 _aMACHINE LEARNING
_954523
650 0 _aSTATISTICS
_xMETHODOLOGY
_9168993
650 0 _aDATA MINING
_954308
650 0 _aBIOINFORMATICS
_957219
650 0 _aINFERENCE
_9217618
650 0 _aFORECASTING
_943905
650 0 _aCOMPUTATIONAL INTELLIGENCE
_969461
700 _aTibshirani, Robert
_9238059
700 _aFriedman, J. H.
_9242530
850 _aSPU
856 _uhttps://drive.google.com/file/d/1cS9-MrVnAYrSKjEGrGQRSd1fqT0uW1J2/view?usp=sharing
_yView Full-text
910 _aLibrary
_bSpringer
_c170521
942 _2lcc
_cEBK
999 _c201764