| 000 | aam a22 4500 | ||
|---|---|---|---|
| 999 | _c194017 | ||
| 003 | SPU | ||
| 005 | 20190824162139.0 | ||
| 008 | 190824b xxu||||| |||| 00| 0 eng d | ||
| 020 |
_a9781999730345 _c1940 |
||
| 040 | _aSPU | ||
| 049 | _aSPU_CHN | ||
| 050 |
_aTA 347 _bF56A 2018 |
||
| 100 |
_9234632 _aFinlay, Steven |
||
| 245 |
_aArtificial intelligence and machine learning for business / _cSteven Finlay |
||
| 246 | _aArtificial intelligence and machine learning for business: A no-nonsense guide to data driven technologies | ||
| 250 | _a3rd ed. | ||
| 260 |
_bRelativistic, _c2018 _aGreat Britain : |
||
| 300 |
_aX, 182 p. ; _c22 cm. |
||
| 505 | _a1. Introduction page 1-5 -- 2. What are machine learning and artificial intelligence (AI)? page 6-18 -- 3. What do the scores generated by a predictive model represent? page 19-25 -- 4. Why use machine learning? What value does it add? page 26-30 -- 5. How does machine learning work? page 31-41 -- 6. Using a predictive model to make decisions page 42-46 -- 7. That's scorecards, but what about decision trees? page 47-52 -- 8. Neural networks and deep learning page 53-63 -- 9. Unsupervised and reinforcement learning page 64-76 -- 10. How to build a predictive model page 77-92 -- 11. Operationalizing machine learning page 93-104 -- 12. The relationship between big data and machine learning page 105-110 -- 13. Ethical, law and the GDPR page 111-124 -- 14. The cutting edge of machine learning page 125-133 -- 15. When can i buy a self-driving car? page 134-141 -- 16. Concluding remarks page 142 | ||
| 650 | 0 | 0 |
_947448 _aNEURAL NETWORKS (COMPUTER SCIENCE) |
| 650 | 0 | 0 |
_954523 _aMACHINE LEARNING |
| 650 | 0 | 0 |
_9212924 _aBIG DATA |
| 650 | 0 | 0 |
_938892 _aARTIFICIAL INTELLIGENCE |
| 650 | 0 | 0 |
_939148 _aARTIFICIAL INTELLIGENCE _xDATA PROCESSING |
| 850 | _aSPU | ||
| 942 |
_2lcc _cGEN |
||
| 998 |
_amonthira 240819 _bmonthira 240819 |
||