000 aam a22 4500
999 _c194017
003 SPU
005 20190824162139.0
008 190824b xxu||||| |||| 00| 0 eng d
020 _a9781999730345
_c1940
040 _aSPU
049 _aSPU_CHN
050 _aTA 347
_bF56A 2018
100 _9234632
_aFinlay, Steven
245 _aArtificial intelligence and machine learning for business /
_cSteven Finlay
246 _aArtificial intelligence and machine learning for business: A no-nonsense guide to data driven technologies
250 _a3rd ed.
260 _bRelativistic,
_c2018
_aGreat Britain :
300 _aX, 182 p. ;
_c22 cm.
505 _a1. Introduction page 1-5 -- 2. What are machine learning and artificial intelligence (AI)? page 6-18 -- 3. What do the scores generated by a predictive model represent? page 19-25 -- 4. Why use machine learning? What value does it add? page 26-30 -- 5. How does machine learning work? page 31-41 -- 6. Using a predictive model to make decisions page 42-46 -- 7. That's scorecards, but what about decision trees? page 47-52 -- 8. Neural networks and deep learning page 53-63 -- 9. Unsupervised and reinforcement learning page 64-76 -- 10. How to build a predictive model page 77-92 -- 11. Operationalizing machine learning page 93-104 -- 12. The relationship between big data and machine learning page 105-110 -- 13. Ethical, law and the GDPR page 111-124 -- 14. The cutting edge of machine learning page 125-133 -- 15. When can i buy a self-driving car? page 134-141 -- 16. Concluding remarks page 142
650 0 0 _947448
_aNEURAL NETWORKS (COMPUTER SCIENCE)
650 0 0 _954523
_aMACHINE LEARNING
650 0 0 _9212924
_aBIG DATA
650 0 0 _938892
_aARTIFICIAL INTELLIGENCE
650 0 0 _939148
_aARTIFICIAL INTELLIGENCE
_xDATA PROCESSING
850 _aSPU
942 _2lcc
_cGEN
998 _amonthira 240819
_bmonthira 240819