TY - DATA AU - Hastie, Trevor AU - Tibshirani, Robert AU - Friedman, J. H. TI - The elements of statistical learning: data mining, inference, and prediction SN - 9780387848587 (E-book) AV - Q 325.5 H37E 2009 PY - 2009/// CY - New York, PB - Springer KW - MACHINE LEARNING KW - STATISTICS KW - METHODOLOGY KW - DATA MINING KW - BIOINFORMATICS KW - INFERENCE KW - FORECASTING KW - COMPUTATIONAL INTELLIGENCE N1 - Includes bibliographical references (p. [699]-727) and index; Introduction -- Overview of Supervised Learning -- Linear Methods for Regression -- Linear Methods for Classification -- Basis Expansions and Regularization -- Kernel Smoothing Methods -- Model Assessment and Selection -- Model Inference and Averaging -- Additive Models, Trees, and Related Methods -- Boosting and Additive Trees -- Neural Networks -- Support Vector Machines and Flexible Discriminants -- Prototype Methods and Nearest-Neighbors -- Unsupervised Learning -- Random Forests -- Ensemble Learning -- Undirected Graphical Models -- High-Dimensional Problems: p ≫ N UR - https://drive.google.com/file/d/1cS9-MrVnAYrSKjEGrGQRSd1fqT0uW1J2/view?usp=sharing ER -